Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
1.
J Agric Food Chem ; 72(18): 10616-10626, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38656193

RESUMEN

Deoxynivalenol (DON) is a common food contaminant that can impair male reproductive function. This study investigated the effects and mechanisms of DON exposure on progenitor Leydig cell (PLC) development in prepubertal male rats. Rats were orally administrated DON (0-4 mg/kg) from postnatal days 21-28. DON increased PLC proliferation but inhibited PLC maturation and function, including reducing testosterone levels and downregulating biomarkers like HSD11B1 and INSL3 at ≥2 mg/kg. DON also stimulated mitochondrial fission via upregulating DRP1 and FIS1 protein levels and increased oxidative stress by reducing antioxidant capacity (including NRF2, SOD1, SOD2, and CAT) in PLCs in vivo. In vitro, DON (2-4 µM) inhibited PLC androgen biosynthesis, increased reactive oxygen species production and protein levels of DRP1, FIS1, MFF, and pAMPK, decreased mitochondrial membrane potential and MFN1 protein levels, and caused mitochondrial fragmentation. The mitochondrial fission inhibitor mdivi-1 attenuated DON-induced impairments in PLCs. DON inhibited PLC steroidogenesis, increased oxidative stress, perturbed mitochondrial homeostasis, and impaired maturation. In conclusion, DON disrupts PLC development in prepubertal rats by stimulating mitochondrial fission.


Asunto(s)
Células Intersticiales del Testículo , Mitocondrias , Dinámicas Mitocondriales , Estrés Oxidativo , Ratas Sprague-Dawley , Tricotecenos , Animales , Masculino , Dinámicas Mitocondriales/efectos de los fármacos , Ratas , Células Intersticiales del Testículo/efectos de los fármacos , Células Intersticiales del Testículo/metabolismo , Células Intersticiales del Testículo/citología , Tricotecenos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Testosterona/metabolismo , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Células Madre/citología , Humanos , Dinaminas/metabolismo , Dinaminas/genética , Potencial de la Membrana Mitocondrial/efectos de los fármacos
2.
Chem Biol Interact ; 394: 110987, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38574835

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are widely used synthetic chemicals that persist in the environment and bioaccumulate in animals and humans. There is growing evidence that PFAS exposure adversely impacts neurodevelopment and neurological health. Steroid 5α-reductase 1 (SRD5A1) plays a key role in neurosteroidogenesis by catalyzing the conversion of testosterone or pregnenolone to neuroactive steroids, which influence neural development, cognition, mood, and behavior. This study investigated the inhibitory strength and binding interactions of 18 PFAS on human and rat SRD5A1 activity using enzyme assays, molecular docking, and structure-activity relationship analysis. Results revealed that C9-C14 PFAS carboxylic acid at 100 µM significantly inhibited human SRD5A1, with IC50 values ranged from 10.99 µM (C11) to 105.01 µM (C14), and only one PFAS sulfonic acid (C8S) significantly inhibited human SRD5A1 activity, with IC50 value of 8.15 µM. For rat SRD5A1, C9-C14 PFAS inhibited rat SRD5A1, showing the similar trend, depending on carbon number of the carbon chain. PFAS inhibit human and rat SRD5A1 in a carbon chain length-dependent manner, with optimal inhibition around C11. Kinetic studies indicated PFAS acted through mixed inhibition. Molecular docking revealed PFAS bind to the domain between NADPH and testosterone binding site of both SRD5A1 enzymes. Inhibitory potency correlated with physicochemical properties like carbon number of the carbon chain. These findings suggest PFAS may disrupt neurosteroid synthesis and provide insight into structure-based inhibition of SRD5A1.


Asunto(s)
3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa , Simulación del Acoplamiento Molecular , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/química , Animales , Humanos , Ratas , Relación Estructura-Actividad , Proteínas de la Membrana/metabolismo , Fluorocarburos/química , Fluorocarburos/metabolismo , Fluorocarburos/farmacología , Unión Proteica , Carbono/química , Carbono/metabolismo , Sitios de Unión
3.
Lupus ; 33(5): 470-480, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38442229

RESUMEN

OBJECTIVE: This study aimed to investigate the correlation between positive psychological capital, post-traumatic growth, social support, and quality of life (QOL) in patients with systemic lupus erythematosus (SLE). METHODS: A cross-sectional study was conducted at the First Affiliated Hospital of Xinjiang Medical University from October 2022 to May 2023. A sample of 330 hospitalized SLE patients was selected for this study. The collected data included demographic information, the SLE disease activity index, the Positive Mental Capital Questionnaire, the Chinese version of the Post-Traumatic Growth Scale, the Social Support Rating Scale, and the Chinese version of the Lupus Quality of Life Scale. RESULTS: The QOL score among the 330 SLE patients was measured as M(P25, P75) of 105 (83.00,124.00). Positive psychological capital, post-traumatic growth, and social support demonstrated significant positive correlations with the QOL in SLE patients (p < 0.05). Multiple linear regression analysis revealed that literacy, disease level, disease duration, occupation, marital status, psychological capital, social support, and post-traumatic growth were influential factors associated with the QOL in SLE patients. CONCLUSION: Medical professionals should be attentive to the psychological well-being of SLE patients and should consider implementing early psychological interventions. These interventions are crucial for enhancing the QOL for individuals diagnosed with SLE.


Asunto(s)
Lupus Eritematoso Sistémico , Crecimiento Psicológico Postraumático , Humanos , Calidad de Vida/psicología , Estudios Transversales , Lupus Eritematoso Sistémico/complicaciones , Apoyo Social , Encuestas y Cuestionarios
4.
Comput Biol Chem ; 109: 108027, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38340414

RESUMEN

Channel-regulated peptides (CRPs) derived from animal venom hold great promise as potential drug candidates for numerous diseases associated with channel proteins. However, discovering and identifying CRPs using traditional bio-experimental methods is a time-consuming and laborious process. While there were a few computational studies on CRPs, they were limited to specific channel proteins, relied heavily on complex feature engineering, and lacked the incorporation of multi-source information. To address these problems, we proposed a novel deep learning model, called DeepCRPs, based on graph neural networks for systematically mining CRPs from animal venom. By combining the sequence semantic and structural information, the classification performance of four CRPs was significantly enhanced, reaching an accuracy of 0.92. This performance surpassed baseline models with accuracies ranging from 0.77 to 0.89. Furthermore, we employed advanced interpretable techniques to explore sequence and structural determinants relevant to the classification of CRPs, yielding potentially valuable bio-function interpretations. Comprehensive experimental results demonstrated the precision and interpretive capability of DeepCRPs, making it an accurate and bio-explainable suit for the identification and categorization of CRPs. Our research will contribute to the discovery and development of toxin peptides targeting channel proteins. The source data and code are freely available at https://github.com/liyigerry/DeepCRPs.


Asunto(s)
Semántica , Ponzoñas , Animales , Péptidos , Redes Neurales de la Computación
5.
Biofactors ; 50(2): 266-293, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38059412

RESUMEN

Ferroptosis is a new form of regulated cell death caused by iron-dependent accumulation of lethal polyunsaturated phospholipids peroxidation. It has received considerable attention owing to its putative involvement in a wide range of pathophysiological processes such as organ injury, cardiac ischemia/reperfusion, degenerative disease and its prevalence in plants, invertebrates, yeasts, bacteria, and archaea. To counter ferroptosis, living organisms have evolved a myriad of intrinsic efficient defense systems, such as cyst(e)ine-glutathione-glutathione peroxidase 4 system (cyst(e)ine-GPX4 system), guanosine triphosphate cyclohydrolase 1/tetrahydrobiopterin (BH4) system (GCH1/BH4 system), ferroptosis suppressor protein 1/coenzyme Q10 system (FSP1/CoQ10 system), and so forth. Among these, GPX4 serves as the only enzymatic protection system through the reduction of lipid hydroperoxides, while other defense systems ultimately rely on small compounds to scavenge lipid radicals and prevent ferroptotic cell death. In this article, we systematically summarize the chemical biology of lipid radical trapping process by endogenous chemicals, such as coenzyme Q10 (CoQ10), BH4, hydropersulfides, vitamin K, vitamin E, 7-dehydrocholesterol, with the aim of guiding the discovery of novel ferroptosis inhibitors.


Asunto(s)
Quistes , Ubiquinona , Humanos , Ubiquinona/metabolismo , Peroxidación de Lípido , Muerte Celular , Peróxidos Lipídicos/metabolismo
6.
Huan Jing Ke Xue ; 44(11): 6062-6070, 2023 Nov 08.
Artículo en Chino | MEDLINE | ID: mdl-37973090

RESUMEN

Elucidating the main sources and transformation process of nitrate for the prevention and control of groundwater nitrogen pollution and the development and utilization of groundwater resources has great significance. To explore the current situation and source of nitrate pollution in shallow groundwater around the Dianchi Lake, 73 shallow groundwater samples were collected in the rainy season in 2020(October) and dry season in 2021(April). Using the hydrochemistry and nitrogen and oxygen isotopes(δ15N-NO3- and δ18O-NO3-), the spatial distribution, source, and transformation process of nitrate in shallow groundwater were identified. The contribution of nitrogen from different sources to nitrate in shallow groundwater was quantitatively evaluated using the isotope mixing model(SIAR). The results showed that in nearly 40.5% of sampling points in the shallow groundwater in the dry season, ρ(NO3--N) exceeded the 20 mg·L-1 specified in the Class Ⅲ water quality standard for groundwater(GB/T 14848), and in more than 47.2% of sampling points in the rainy season, ρ (NO3--N) exceeded 20 mg·L-1. The analysis results of nitrogen and oxygen isotopes and SIAR model showed that soil organic nitrogen, chemical fertilizer nitrogen, and manure and sewage nitrogen were the main sources of nitrate in shallow groundwater; these nitrogen sources contributed 13.9%, 11.8%, and 66.5% to nitrate in shallow groundwater in the dry season and 33.7%, 31.1%, and 25.9% in the rainy season, respectively. However, the contribution rate of atmospheric nitrogen deposition was only 8.5%, which contributed little to the source of nitrate in shallow groundwater in the study area. Nitrification was the leading process of nitrate transformation in shallow groundwater in the dry season, denitrification was the dominant process in the rainy season, and denitrification was more noticeable in the rainy season than that in the dry season.

7.
Altern Ther Health Med ; 29(8): 650-655, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37678870

RESUMEN

Objective: To investigate the effects of Moringa Oleifera Leaf Extract (MOLE) plus rosiglitazone (RSG) on glucose and lipid metabolism, serum leptin, and the Akt/GSK3ß/ß-Catenin signaling pathway in type 2 diabetic (T2D) rats. Methods: Sixty male Sprague-Dawley (SD) rats were randomly divided into six groups: the normal group, the model group, the RSG group, the low- and high-dose MOLE group, and the MOLE+RSG group. The normal group was fed a standard rat diet, while the other groups were given a single intraperitoneal injection of low-dose streptozomycin (STZ) (35 mg/kg) and fed a high-sugar and high-fat diet. After 8 weeks, the treatment outcomes were evaluated by measuring key parameters of blood glucose and lipid metabolism and the protein kinase B (AKT) / Glycogen synthase kinase 3beta (GSK3ß) /ß-Catenin signaling pathway in the T2D rats. Results: Compared with the normal group, the model group showed significantly increased levels of blood glucose, blood lipids, serum leptin, free fatty acid (FFA), and tumor necrosis factor-α (TNF-α). Compared with the model group, the RSG, low-dose MOLE, and high-dose MOLE groups displayed effective control of blood glucose, blood lipids, serum leptin, FFA, and TNF-α. The MOLE+RSG group surpassed the RSG group in regulating glucose, lipid metabolism, and serum leptin levels in T2D rats. In addition, the MOLE+RSG group also had superiority over the RSG group in activating the AKT/GSK3ß/ß-Catenin pathway. Conclusion: MOLE plus RSG can effectively reduce blood glucose and blood lipids in T2DM rats.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Moringa oleifera , Ratas , Masculino , Animales , Rosiglitazona/uso terapéutico , Glucosa/metabolismo , Glucemia , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/uso terapéutico , Moringa oleifera/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , beta Catenina/metabolismo , beta Catenina/uso terapéutico , Leptina/metabolismo , Leptina/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Metabolismo de los Lípidos , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/uso terapéutico , Ratas Sprague-Dawley , Lípidos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico
8.
Environ Res ; 237(Pt 2): 116974, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37625537

RESUMEN

The wide use of antibiotics in aquaculture has triggered global ecological security issue. Microalgal bioremediation is a promising strategy for antibiotics elimination due to carbon recovery, detoxification and various ecological advantages. However, a lack of understanding with respect to the corresponding regulation mechanism towards antibiotic stress may limit its practical applicability. The microalga Scenedesmus obliquus was shown to be capable of effectively eliminating ciprofloxacin (CIP), which is a common antibiotic used in aquaculture. However, the corresponding transcriptional alterations require further investigation and verification at the metabolomic level. Thus, this study uncovered the metabolomic profiles and detailed toxic and defense mechanisms towards CIP in S. obliquus using untargeted metabolomics. The enhanced oligosaccharide/polyol/lipid transport, up-regulation of carbohydrate and arachidonic acid metabolic pathways and increased energy production via EMP metabolism were observed as defense mechanisms of microalgal cells to xenobiotic CIP. The toxic metabolic responses included: (1) down-regulation of parts of mineral and organic transporters; (2) electrons competition between antibiotic and NAD during intracellular CIP degradation; and (3) suppressed expression of the hem gene in chlorophyll biosynthesis. This study describes the metabolic profile of microalgae during CIP elimination and reveals the key pathways from the perspective of metabolism, thereby providing information on the precise regulation of antibiotic bioremediation via microalgae.

9.
Bioresour Technol ; 384: 129317, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37315625

RESUMEN

This study explores the simultaneous sulfamethoxazole (SMX) removal and short-chain fatty acids (SCFAs) production by a Clostridium sensu stricto-dominated microbial consortium. SMX is a commonly prescribed and persistent antimicrobial agent frequently detected in aquatic environments, while the prevalence of antibiotic-resistant genes limits the biological removal of SMX. Under strictly anaerobic conditions, sequencing batch cultivation coupled with co-metabolism resulted in the production of butyric acid, valeric acid, succinic acid, and caproic acid. Continuous cultivation in a CSTR achieved a maximum butyric acid production rate and yield of 0.167 g/L/h and 9.56 mg/g COD, respectively, while achieving a maximum SMX degradation rate and removal capacity of 116.06 mg/L/h and 55.8 g SMX/g biomass. Furthermore, continuous anaerobic fermentation reduced sul genes prevalence, thus limiting the transmission of antibiotic resistance genes during antibiotic degradation. These findings suggest a promising approach for efficient antibiotic elimination while simultaneously producing valuable products (e.g., SCFAs).


Asunto(s)
Antibacterianos , Sulfametoxazol , Fermentación , Ácidos Grasos Volátiles , Ácido Butírico
10.
Molecules ; 28(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37175147

RESUMEN

H1.6Mn1.6O4 lithium-ion screen adsorbents were synthesized by soft chemical synthesis and solid phase calcination and then applied to the recovery of metal Li and Co from waste cathode materials of a lithium cobalt oxide-based battery. The leaching experiments of cobalt and lithium from cathode materials by a citrate hydrogen peroxide system and tartaric acid system were investigated. The experimental results showed that under the citrate hydrogen peroxide system, when the temperature was 90 °C, the rotation speed was 600 r·min-1 and the solid-liquid ratio was 10 g·1 L-1, the leaching rate of Co and Li could reach 86.21% and 96.9%, respectively. Under the tartaric acid system, the leaching rates of Co and Li were 90.34% and 92.47%, respectively, under the previous operating conditions. The adsorption results of the lithium-ion screen showed that the adsorbents were highly selective for Li+, and the maximum adsorption capacities were 38.05 mg·g-1. In the process of lithium removal, the dissolution rate of lithium was about 91%, and the results of multiple cycles showed that the stability of the adsorbent was high. The recovery results showed that the purity of LiCl, Li2CO3 and CoCl2 crystals could reach 93%, 99.59% and 87.9%, respectively. LiCoO2 was regenerated by the sol-gel method. XRD results showed that the regenerated LiCoO2 had the advantages of higher crystallinity and less impurity.

11.
Regen Biomater ; 10: rbad021, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37020753

RESUMEN

Cu-mediated chemodynamic therapy (CDT) has attracted prominent attention owing to its advantages of pH independence and high efficiency comparing to Fe-mediated CDT, while the application of Cu-based CDT agents was impeded due to the high copper consumption caused by the metabolism loss of copper and the resultant potential toxicity. Herein, we developed a new copper-mediated CDT agent with extremely low Cu usage by anchoring copper on cross-linked lipoic acid nanoparticles (Cu@cLAs). After endocytosis into tumor cells, the Cu@cLAs were dissociated into LA and dihydrolipoic acid (DHLA) (reduced form of LA) and released Cu2+ and Cu+ (oxidized form of Cu2+), the two redox couples recycled each other in cells to achieve the efficient killing of cancer cells by delaying metabolic loss and increasing the ROS level of tumor cells. The self-recycling was confirmed in cells by the sustained high Cu/DHLA content and persistent ROS generation process. The antitumor study based on the MCF-7/R nude mice gave the Cu@cLAs a tumor inhibitory rate up to 77.9% at the copper of 0.05 mg kg-1, the first dosage reported so far lower than that of normal serum copper (0.83 ± 0.21 mg kg-1). This work provides not only a new promising clinical strategy for the copper excessive use in copper-mediated CDT, but also gives a clue for other metal mediated disease therapies with the high metal consumption.

12.
J Mater Chem B ; 11(13): 2916-2926, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36892505

RESUMEN

Immunogenic cell death (ICD) induced by reactive oxygen species (ROS) represents a particular form of tumor cell death for approaching the problem of low immunogenicity of tumors in immunotherapy, while the oxidative damage to normal cells of current ICD inducers hinders their clinical application. Herein, a new ICD inducer VC@cLAV constructed solely by dietary antioxidants, lipoic acid (LA) and vitamin C (VC), is developed, which could promote heavy intracellular ROS production in cancer cells for ICD induction while acting as an anti-oxidant in non-cancer cells for cytoprotection, and thus hold high biosafety. In vitro studies show that VC@cLAV induced a release of antigens and a maturation rate of DCs up to 56.5%, approaching the positive control (58.4%). In vivo combined with αPD-1, VC@cLAV showed excellent antitumor activity against both primary and distant metastatic tumors with an inhibition rate of 84.8% and 79.0% compared to 14.2% and 10.0% in the αPD-1 alone group. Notably, VC@cLAV established a long-term antitumor immune memory effect against tumor rechallenging. This study not only presents a new kind of ICD inducer but also provides an impetus for the development of dietary antioxidant-based cancer drugs.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Ácido Ascórbico/farmacología , Ácido Ascórbico/metabolismo , Inmunoterapia , Nanopartículas/uso terapéutico
13.
Front Aging Neurosci ; 15: 1040277, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36819714

RESUMEN

Background: Sufficient attention to trunk rehabilitation after stroke is still lacking. Loss of trunk selective activity is considered to be the leading cause of trunk postural control disorder after stroke. "Taking the Waist as the Axis" Therapy (WAT) was developed as a combination of the concept of "Taking the Waist as the Axis" from Tai Chi and the rehabilitation of trunk dysfunction after stroke. The present clinical trial examined and assessed the effects of WAT on stroke patients. Methods: A total of 43 stroke hemiplegic patients with trunk postural control disorder, whose Trunk Impairment Scale (TIS) scoring between 8 and 18, participated in the present study and were allocated randomly to the experimental (n = 23) or control groups (n = 20). The experimental group received WAT plus conventional therapy, and the control group received "Trunk Selective Activity" Therapy (TSAT) plus conventional therapy. Both groups received treatment once daily and 5 times per week for 3 weeks. The Trunk Impairment Scale (TIS), Fugl-Meyer Assessment (FMA), Berg Balance Scale (BBS), change of Intra-abdominal Pressure (IAP), static balance ability assessment, rapid ventilation lung function test and the Modified Barthel Index (MBI) were evaluated before and after intervention for both groups. Results: The experimental group was superior to the control group in TIS [4 (2, 5) vs. 3 (1.25, 4), p = 0.030], change of IAP [-3 (-8, -1.33) vs. -0.02 (-3.08, 6), p = 0.011], FMA-upper extremity [10 (6, 18) vs. 1 (0, 3), p = 0.002], FMA-lower extremity [2 (1, 4) vs. 1 (0, 2), p = 0.009] and FMA [14 (7, 21) vs. 2 (0.25, 3.75), p = 0.001]. Within experimental group, forced vital capacity (FVC) [81.35 (63.30, 94.88) vs. 91.75 (79.40, 97.90), p = 0.02] was significantly improved. Conclusion: WAT was an effective trunk treatment after stroke, which significantly improved the patients' trunk posture control ability, motor function and forced vital capacity. However, the results still need to be interpreted with caution for the intervention only lasted for 3 weeks.

14.
Front Public Health ; 11: 1294341, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38249400

RESUMEN

Objective: Improving the detection capability and efficiency of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA specimens is very important for the prevention and control of the outbreak of Coronavirus disease 2019 (COVID-19). In this study, we evaluated the detection capability and efficiency of two outbreaks of COVID-19 before and after the process re-engineering in April and July 2022. Methods: This retrospective cross-sectional study involved 359,845 SARS-CoV-2 RNA specimens 2 weeks before and 2 weeks after the two outbreaks of COVID-19 in April and July. The number, transportation time and detection time of specimens, and the number of reports of more than 24 h were analyzed by SPSS software. Results: While 16.84% of people chose nasopharyngeal swabs (NPS) specimens, 83.16% chose oropharyngeal swabs (OPS) specimens to detect SARS-CoV-2 RNA. There were significant upward trends in the percentage of 10 sample pooling (P-10) from April before process re-engineering to July after process re-engineering (p < 0.001). Compared with April, the number of specimens in July increased significantly not only 2 weeks before but also 2 weeks after the outbreak of COVID-19, with an increase of 35.46 and 93.94%, respectively. After the process re-engineering, the number of reports more than 24 h in the 2 weeks before and after the outbreak of COVID-19 in July was significantly lower than that in April before process re-engineering (0% vs. 0.06% and 0 vs. 0.89%, both p < 0.001). Conclusion: The present study shows that strengthening the cooperation of multi-departments in process re-engineering, especially using the P-10 strategy and whole process informatization can improve the detection capability and efficiency of SARS-CoV-2 RNA specimens.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiología , SARS-CoV-2/genética , Estudios Transversales , ARN Viral , Estudios Retrospectivos
15.
Sensors (Basel) ; 22(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36560157

RESUMEN

With the continuous progress of development, deep learning has made good progress in the analysis and recognition of images, which has also triggered some researchers to explore the area of combining deep learning with hyperspectral medical images and achieve some progress. This paper introduces the principles and techniques of hyperspectral imaging systems, summarizes the common medical hyperspectral imaging systems, and summarizes the progress of some emerging spectral imaging systems through analyzing the literature. In particular, this article introduces the more frequently used medical hyperspectral images and the pre-processing techniques of the spectra, and in other sections, it discusses the main developments of medical hyperspectral combined with deep learning for disease diagnosis. On the basis of the previous review, tne limited factors in the study on the application of deep learning to hyperspectral medical images are outlined, promising research directions are summarized, and the future research prospects are provided for subsequent scholars.


Asunto(s)
Aprendizaje Profundo , Diagnóstico por Imagen
16.
Front Vet Sci ; 9: 949462, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36337200

RESUMEN

Giardia duodenalis is an important zoonotic protozoon, which can infect a variety of animals, causing diarrhea and even death of animals or humans. Dairy cattle have been implicated as important sources of human G. duodenalis. However, the information about the prevalence and genetic diversity of G. duodenalis in dairy cattle in China's Yunnan Province remains limited. This study investigated the occurrence and multilocus genotyping of G. duodenalis of Holstein cattle in Yunnan Province, China. A total of 524 fresh fecal samples of Holstein cattle were randomly collected from 8 farms in Yunnan. In this study, 27.5% (144/524) of tested samples were positive for G. duodenalis infection. The highest infection ratio was found in preweaned calves (33.7%), and the infection rates of postweaned calves, growing cattle, and adult cattle were 24.5%, 23.0%, and 17.3%, respectively. The sequence analysis of SSU rRNA gene showed that the predominant assemblage of G. duodenalis in this study was assemblage E (97.9%, 141/144), whereas assemblage A was identified only in three samples (2.1%, 3/144). All G. duodenalis-positive samples were further assayed with nested polymerase chain reaction (PCR) targeting ß-giardin (bg), triosephosphate isomerase (tpi), and glutamate dehydrogenase (gdh) genes, and 87, 41, and 81 sequences were obtained, respectively. Mixed infection of assemblages A and E of G. duodenalis was detected in three samples. Multilocus genotyping yielded 23 multilocus genotypes (MLGs). This is the first study that reveals the prevalence data of G. duodenalis in Holstein cattle in Yunnan Province, and the results of this study provided baseline data for the prevention and control of G. duodenalis infection in Holstein cattle in Yunnan Province, China.

17.
Huan Jing Ke Xue ; 43(7): 3532-3542, 2022 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-35791537

RESUMEN

The extensive application of phosphorus fertilizers to croplands and the aggregation of towns and villages around plateau lakes has resulted in the continuous accumulation of phosphorus in the soil profile and the discharge of phosphorus pollutants, which causes phosphorus pollution in shallow groundwater around the lakes. The phosphorus entering the lake with shallow underground runoff in the region around the lake also affects the water quality safety of plateau lakes. The spatiotemporal differences in phosphorus concentrations in 452 shallow groundwater samples and the driving factors were analyzed by monitoring wells in croplands and residential areas around the eight lakes in Yunnan province during the rainy and dry seasons from 2019 to 2021. The results showed that seasonal changes and land use influenced phosphorus concentrations and their composition in shallow groundwater. The concentration of phosphorus in shallow groundwater in the rainy season was higher than that in the dry season, and it was also greater in cropland than that in residential areas. DTP was the dominant form of TP, accounting for 75%-81%, and DIP was the dominant form of DTP, accounting for 74%-80%. Nearly 30% of the samples around the eight lakes had TP concentrations exceeding the surface water Class Ⅲ standard (GB 3838); the exceeded rates of phosphorus in groundwater around the Erhai Lake (52%), Qiluhu Lake (45%), Xingyun Lake (42%), and Dianchi Lake (29%) were far higher than those of Yangzonghai Lake (16%), Fuxianhu Lake (13%), Chenghai Lake (6%), and Yilonghu Lake (5%). The key driving factors of phosphorus concentrations in shallow groundwater were water-soluble phosphorus (WEP), water content (MWC), soil organic matter (SOM), total nitrogen (TN), pH in the soil profile, and pH and groundwater level in the shallow groundwater (P<0.05). The increases in WEP, SOM, TN, and MWC in the soil and pH in groundwater significantly increased the concentrations of DIP and DTP in shallow groundwater, whereas the decrease in groundwater level significantly reduced the concentrations of DTP and DIP in the groundwater.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , China , Lagos/química , Nitrógeno/análisis , Fósforo/análisis , Suelo , Contaminantes Químicos del Agua/análisis
18.
Molecules ; 27(13)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35807367

RESUMEN

In this study, the adsorption method and micro-nano bubble (MNB) technology were combined to improve the efficiency of organic pollutant removal from dye wastewater. The adsorption properties of Congo red (CR) on raw coal and semi-coke (SC) with and without MNBs were studied. The mesoporosity of the coal strongly increased after the heat treatment, which was conducive to the adsorption of macromolecular organics, such as CR, and the specific surface area increased greatly from 2.787 m2/g to 80.512 m2/g. MNBs could improve the adsorption of both raw coal and SC under different pH levels, temperatures and dosages. With the use of MNBs, the adsorption capacity of SC reached 169.49 mg/g, which was much larger than that of the raw coal at 15.75 mg/g. The MNBs effectively reduced the adsorption time from 240 to 20 min. In addition, the MNBs could ensure the adsorbent maintained a good adsorption effect across a wide pH range. The removal rate was above 90% in an acidic environment and above 70% in an alkaline environment. MBs can effectively improve the rate of adsorption of pollutants by adsorbents. SC was obtained from low-rank coal through a rapid one-step heating treatment and was used as a kind of cheap adsorbent. The method is thus simple and easy to implement in the industrial context and has the potential for industrial promotion.


Asunto(s)
Coque , Contaminantes Químicos del Agua , Adsorción , Carbón Mineral , Rojo Congo/química , Calor , Concentración de Iones de Hidrógeno , Cinética , Aguas Residuales/química , Contaminantes Químicos del Agua/química
19.
Mediators Inflamm ; 2022: 1707122, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35757105

RESUMEN

Microglia in the penumbra shifted from M2 to M1 phenotype between 3 and 5 days after cerebral ischemia-reperfusion, which promoted local inflammation and injury. Shaoyao-Gancao Decoction (SGD) has been found to result in a significant upregulation of IL-13 in the penumbra, which has been shown to induce polarization of M2 microglia. There was thus a hypothesis that SGD could exert an anti-inflammatory and neuroprotective effect by activating IL-13 to induce microglia polarization towards M2 phenotype, and the purpose of this study was to explore the influence of SGD on microglia phenotype switching and its possible mechanism. Rats who received middle cerebral artery occlusion surgery (MCAO) were treated with SGD for 3 or 6 days, to investigate the therapeutic effect and the underlying mechanism of SGD for cerebral ischemia-reperfusion injury (CI/RP). The results indicated that SGD improved neurobehavioral scores and reduced apoptosis. Furthermore, SGD significantly decreased M1 microglia and M1-like markers, but increased M2 microglia and M2 markers. Moreover, higher levels of IL-13 and ratios of p-JAK2/JAK2 and p-STAT6/STAT6 were found in the SGD group compared to the MCAO. In conclusion, it was verified that SGD prevented injury by driving microglia phenotypic switching from M1 to M2, probably via IL-13 and its downstream JAK2-STAT6 pathway. Given that no further validation tests were included in this study, it is necessary to conduct more experiments to confirm the reliability of the above results.


Asunto(s)
Isquemia Encefálica , Medicamentos Herbarios Chinos , Glycyrrhiza , Microglía , Daño por Reperfusión , Factor de Transcripción STAT6 , Animales , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Medicamentos Herbarios Chinos/farmacología , Glycyrrhiza/química , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Interleucina-13/metabolismo , Janus Quinasa 2/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Ratas , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Reproducibilidad de los Resultados , Factor de Transcripción STAT6/metabolismo , Transducción de Señal/efectos de los fármacos
20.
Huan Jing Ke Xue ; 43(6): 3027-3036, 2022 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-35686772

RESUMEN

Shallow groundwater around plateau lakes is one of the important sources of production and potable water. Shallow groundwater NO3--N pollution driven by factors such as surface nitrogen input load, rainfall, and irrigation is serious and threatens the water quality of plateau lakes. In order to identify the characteristics of nitrogen pollution and its driving factors in shallow groundwater, 463 shallow groundwater samples were collected from wells in farmland and residential areas around eight plateau lakes of Yunnan in the rainy and dry seasons in 2020 and 2021. The results showed that the average values of ρ(TN), ρ(NO3--N), ρ(ON), and ρ(NH4+-N) in shallow groundwater were 24.35, 15.15, 8.41, and 0.79 mg·L-1, respectively. Nearly 32% of the shallow groundwater samples around the eight lakes failed to meet the groundwater Class Ⅲ water quality requirements (GB/T 14848) of 20 mg·L-1 for NO3--N. Among them, the NO3--N concentration in the shallow groundwater around Erhai Lake, Qiluhu Lake, and Dianchi Lake had the highest rate of exceeding the standard, followed by that around Xingyunhu Lake, Yangzonghai Lake, Yilonghu Lake, Fuxianhu Lake, and Chenghai Lake as the smallest. Land use and seasonal changes affected the concentration and composition of various forms of nitrogen in shallow groundwater. The concentration of various forms of nitrogen in shallow groundwater in the farmland area was higher than that in the residential area. The nitrogen concentration in shallow groundwater in farmland was higher than that in residential areas. Except for NH4+-N, the concentration of various forms of nitrogen in shallow groundwater in the rainy season was higher than that in the dry season. NO3--N was the main nitrogen form in shallow groundwater; the fraction of TN was 57%-68%, and the fraction of ON was 27%-38%. The EC, DO, ORP, and T in shallow groundwater were the key factors reflecting or affecting the concentration of various forms of nitrogen in shallow groundwater, whereas soil factors had a weak impact on the concentration of various forms of nitrogen in shallow groundwater.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente/métodos , Lagos , Nitratos/análisis , Nitrógeno/análisis , Contaminantes Químicos del Agua/análisis , Calidad del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...